Section 9.2 Extra Practice

- **1.** List three values that would make each inequality or combination of inequalities true.
 - **a)** $x \le -4$ **b)** x > -3
 - **c)** $x \ge -2$ and $x \le 5$
- 2. Solve each inequality.

a) <i>x</i> + 5 ≤ 12	b) 2 > x - 9
c) 7.4 + <i>x</i> ≥ 6.2	d) <i>x</i> - 4.2 < 3.5
e) 4 <i>x</i> ≤ −16	f) -1.3 <i>x</i> > 16.9
g) $\frac{x}{5} \le -4$	h) $-\frac{1}{4}x \ge 3$

- **3.** Verify if the specified solution is correct for each inequality.
 - a) 2x < -10; x > -5b) $-3x \le -24$; $x \le 8$ c) $-9 \ge -\frac{1}{3}x$; $3 \ge x$ d) x + 8 < -12; x < 20e) $2x \ge -16$; $x \ge -8$ f) -7 + x > -2; x > -9
- **4.** A balloon company guarantees that at least 18 of the balloons in each package are red. Fifteen percent of the balloons are red. What is the number of balloons in a package?
 - a) Write an inequality to model the situation.
 - **b)** Solve and verify the inequality.
 - c) Represent your answer verbally and graphically.
- **5.** a) Write and solve an equation to determine the values of *x* that give the rectangle shown an area of no more than 25 square units.
 - **b)** Are there values of *x* that would not be possible for the length of the rectangle? Explain.

